Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis.

نویسندگان

  • Saulius Satkauskas
  • Michel F Bureau
  • Marko Puc
  • Abderrahim Mahfoudi
  • Daniel Scherman
  • Damijan Miklavcic
  • Lluis M Mir
چکیده

Efficient cell electrotransfection can be achieved using combinations of high-voltage (HV; 800 V/cm, 100 micros) and low-voltage (LV; 80 V/cm, 100 ms) pulses. We have developed equipment allowing the generation of various HV and LV combinations with precise control of the lag between the HV and LV pulses. We injected luciferase-encoding DNA in skeletal muscle, before or after pulse delivery, and measured luciferase expression after various pulse combinations. In parallel, we determined permeabilization levels using uptake of (51)Cr-labeled EDTA. High voltage alone resulted in a high level of muscle permeabilization for 300 seconds, but very low DNA transfer. Combinations of one HV pulse followed by one or four LV pulses did not prolong the high permeabilization level, but resulted in a large increase in DNA transfer for lags up to 100 seconds in the case of one HV + one LV and up to 3000 seconds in the case of one HV + four LV. DNA expression also reached similar levels when we injected the DNA between the HV and LV pulses. We conclude that the role of the HV pulse is limited to muscle cell permeabilization and that the LV pulses have a direct effect on DNA. In vivo DNA electrotransfer is thus a multistep process that includes DNA distribution, muscle permeabilization, and DNA electrophoresis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer.

Efficient DNA electrotransfer can be achieved with combinations of short high-voltage (HV) and long low voltage (LV) pulses that cover two effects of the pulses, namely, target cell electropermeabilization and DNA electrophoresis within the tissue. Because HV and LV can be delivered with a lag up to 3000 sec between them, we considered that it was possible to analyze separately the respective i...

متن کامل

Effect of Mg ions on efficiency of gene electrotransfer and on cell electropermeabilization.

Gene electrotransfer is a promising nonviral method that enables DNA to be transferred into living cells with electric pulses. However, there are many parameters that determine gene electrotransfer efficiency. One of the steps involved in gene electrotransfer is interaction of DNA with the cell membrane. Divalent cations in the electroporative media can influence the anchoring of DNA to the cel...

متن کامل

New Insights into the Mechanisms of Gene Electrotransfer – Experimental and Theoretical Analysis

Gene electrotransfer is a promising non-viral method of gene delivery. In our in vitro study we addressed open questions about this multistep process: how electropermeabilization is related to electrotransfer efficiency; the role of DNA electrophoresis for contact and transfer across the membrane; visualization and theoretical analysis of DNA-membrane interaction and its relation to final trans...

متن کامل

Gene Electrotransfer: A Mechanistic Perspective

Gene electrotransfer is a powerful method of DNA delivery offering several medical applications, among the most promising of which are DNA vaccination and gene therapy for cancer treatment. Electroporation entails the application of electric fields to cells which then experience a local and transient change of membrane permeability. Although gene electrotransfer has been extensively studied in ...

متن کامل

Effects of electropermeabilization and gene electrotransfert on the lateral mobility of a GPi anchored protein

Electrotransfer is a method by which molecules can be introduced in living cells through plasma membrane electropermeabilization. Here, we show that electropermeabilization affects the lateral mobility of RAE-1, a GPi anchored protein. Our results suggest that 10 to 20 % of the membrane surface is occupied by defaults or pores and that these defaults propagates rapidly (<1 min) over the cell su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular therapy : the journal of the American Society of Gene Therapy

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2002